Диагонали прямоугольника равны и точкой пересечения делятся пополам.
Значит, KN = 1/2 EK = 72/2 = 36 см и NB = 1/2 KB = 54/2 = 27 см.
Треугольник KNB прямоугольный, следовательно по теореме Пифагора, \(KB^2 = KN^2 + NB^2 \) , отсюда \(KB = \sqrt{KN^2 + NB^2} = \sqrt{36^2 + 27^2} = \sqrt{1296 + 729} = \sqrt{2025} = 45\).
Периметр треугольника KNB = KN + NB + KB = 36 + 27 + 45 = 108 см.
Ответ: 108 см.