Упростим выражение:
$$(8+\frac{c}{8-c^2} -1) \cdot (\frac{c}{c+2}+2)$$
$$(\frac{8(8-c^2)+c}{8-c^2} -1) \cdot (\frac{c+2(c+2)}{c+2})$$
$$(\frac{64-8c^2+c-8+c^2}{8-c^2}) \cdot (\frac{c+2c+4}{c+2})$$
$$(\frac{56-7c^2+c}{8-c^2}) \cdot (\frac{3c+4}{c+2})$$
$$(\frac{-7(c^2-8)-c}{8-c^2}) \cdot (\frac{3c+4}{c+2})$$
Ответ: $$(\frac{56-7c^2+c}{8-c^2}) \cdot (\frac{3c+4}{c+2})$$