Дано: $$\cos A = 0.7 = \frac{7}{10}$$.
Используем основное тригонометрическое тождество: $$\sin^2 A + \cos^2 A = 1$$.
$$\sin^2 A = 1 - \cos^2 A = 1 - (0.7)^2 = 1 - 0.49 = 0.51$$
$$\sin A = \sqrt{0.51} \approx 0.714$$
Теперь найдем тангенс и котангенс угла A.
$$\tan A = \frac{\sin A}{\cos A} = \frac{\sqrt{0.51}}{0.7} = \frac{\sqrt{0.51}}{\frac{7}{10}} = \frac{10\sqrt{0.51}}{7} \approx \frac{0.714}{0.7} \approx 1.02$$
$$\cot A = \frac{1}{\tan A} = \frac{\cos A}{\sin A} = \frac{0.7}{\sqrt{0.51}} = \frac{7}{10\sqrt{0.51}} \approx \frac{0.7}{0.714} \approx 0.98$$
**Ответ:**
* $$\sin A \approx 0.714$$
* $$\tan A \approx 1.02$$
* $$\cot A \approx 0.98$$