Вопрос:

7.Найдите скалярное произведение векторов \(\overrightarrow{a}\) и \(\overrightarrow{c}\), если 1) \(\overrightarrow{a}\{-2; 4\}\) \(\overrightarrow{c}\{5;-3\}\) 2) |\(\overrightarrow{a}\)| =5, |\(\overrightarrow{c}\)|= 0,4 , \(\widehat{\overrightarrow{a} \overrightarrow{c}}\) =120°

Смотреть решения всех заданий с листа

Ответ:

1) \(\overrightarrow{a}\{-2; 4\}\) и \(\overrightarrow{c}\{5;-3\}\)

Скалярное произведение векторов \(\overrightarrow{a}\) и \(\overrightarrow{c}\) вычисляется по формуле:

\(\overrightarrow{a} \cdot \overrightarrow{c} = x_a \cdot x_c + y_a \cdot y_c\)

\(\overrightarrow{a} \cdot \overrightarrow{c} = (-2) \cdot 5 + 4 \cdot (-3) = -10 - 12 = -22\)

2) |\(\overrightarrow{a}\)| =5, |\(\overrightarrow{c}\)|= 0,4 , \(\widehat{\overrightarrow{a} \overrightarrow{c}}\) =120°

Скалярное произведение векторов \(\overrightarrow{a}\) и \(\overrightarrow{c}\) вычисляется по формуле:

\(\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{a}| \cdot |\overrightarrow{c}| \cdot cos(\widehat{\overrightarrow{a} \overrightarrow{c}})\)

\(\overrightarrow{a} \cdot \overrightarrow{c} = 5 \cdot 0.4 \cdot cos(120°) = 5 \cdot 0.4 \cdot (-0.5) = 2 \cdot (-0.5) = -1\)

Ответ: 1) -22; 2) -1

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие