**Теорема Виета**
Для квадратного уравнения вида (ax^2 + bx + c = 0), сумма корней (x_1 + x_2 = -rac{b}{a}) и произведение корней (x_1 cdot x_2 = rac{c}{a}).
**1) a) (x^2 - 9x + 12 = 0)**
(x_1 + x_2 = -rac{-9}{1} = 9)
(x_1 cdot x_2 = rac{12}{1} = 12)
**1) б) (x^2 - 16x + 5 = 0)**
(x_1 + x_2 = -rac{-16}{1} = 16)
(x_1 cdot x_2 = rac{5}{1} = 5)
**1) в) (y^2 + 6y - 21 = 0)**
(y_1 + y_2 = -rac{6}{1} = -6)
(y_1 cdot y_2 = rac{-21}{1} = -21)
**1) г) (y^2 + 7y - 7 = 0)**
(y_1 + y_2 = -rac{7}{1} = -7)
(y_1 cdot y_2 = rac{-7}{1} = -7)
**2) a) (x^2 - 55x = 0)**
(x_1 + x_2 = -rac{-55}{1} = 55)
(x_1 cdot x_2 = rac{0}{1} = 0)
**2) б) (y^2 - 31 = 0)**
(y_1 + y_2 = -rac{0}{1} = 0)
(y_1 cdot y_2 = rac{-31}{1} = -31)
**2) в) (z^2 + 42 = 0)**
(z_1 + z_2 = -rac{0}{1} = 0)
(z_1 cdot z_2 = rac{42}{1} = 42)
**2) г) (-y^2 + 4.9y = 0) или (y^2 - 4.9y = 0)**
(y_1 + y_2 = -rac{-4.9}{1} = 4.9)
(y_1 cdot y_2 = rac{0}{1} = 0)
**3) a) (3x^2 - 17x + 10 = 0)**
(x_1 + x_2 = -rac{-17}{3} = rac{17}{3})
(x_1 cdot x_2 = rac{10}{3})
**3) б) (8x^2 + 21x - 29 = 0)**
(x_1 + x_2 = -rac{21}{8})
(x_1 cdot x_2 = rac{-29}{8})
**3) в) (-9x^2 + 14x + 19 = 0) или (9x^2 - 14x - 19 = 0)**
(x_1 + x_2 = -rac{-14}{9} = rac{14}{9})
(x_1 cdot x_2 = rac{-19}{9})
**3) г) (7y^2 - 12y = 0)**
(y_1 + y_2 = -rac{-12}{7} = rac{12}{7})
(y_1 cdot y_2 = rac{0}{7} = 0)