Вопрос:

7) Найдите tg x, если sin x = 0,6; 0 <x< < x < 2 2

Смотреть решения всех заданий с листа

Ответ:

7) Найдем $$ \tg x $$, если $$ \sin x = 0.6 $$, $$ 0 < x < \frac{\pi}{2} $$.

Так как $$ \sin^2 x + \cos^2 x = 1 $$, то $$ \cos^2 x = 1 - \sin^2 x = 1 - 0.6^2 = 1 - 0.36 = 0.64 $$.

$$ \cos x = \sqrt{0.64} = 0.8 $$ (так как $$ 0 < x < \frac{\pi}{2} $$, то $$ \cos x > 0 $$).

$$ \tg x = \frac{\sin x}{\cos x} = \frac{0.6}{0.8} = \frac{6}{8} = \frac{3}{4} = 0.75 $$.

Ответ: $$ \tg x = 0.75 $$.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие