Площадь параллелограмма можно найти по формуле:
$$S = a \cdot b \cdot \sin(\alpha)$$
где
$$S$$ - площадь параллелограмма,
$$a$$ и $$b$$ - стороны параллелограмма,
$$\alpha$$ - угол между сторонами $$a$$ и $$b$$.
$$S = 7 \text{ см} \cdot 9 \text{ см} \cdot \sin(135^\circ) = 7 \text{ см} \cdot 9 \text{ см} \cdot \frac{\sqrt{2}}{2} = \frac{63 \sqrt{2}}{2} \text{ см}^2 ≈ 44.55 \text{ см}^2$$
Ответ: $$\frac{63 \sqrt{2}}{2} \text{ см}^2 ≈ 44.55 \text{ см}^2$$