Первый случай:
2log2(2x+7)≥5+log2(x+2)
log_2(2x+7)^2 >= log_2 2^5 + log_2(x+2)
log_2(2x+7)^2 >= log_2 (32(x+2))
(2x+7)^2 >= 32(x+2)
4x^2 + 28x + 49 >= 32x + 64
4x^2 - 4x - 15 >= 0
D = (-4)^2 - 4 * 4 * (-15) = 16 + 240 = 256
x1 = (4 + \sqrt{256}) / (2 * 4) = (4 + 16) / 8 = 20 / 8 = 5/2 = 2.5
x2 = (4 - \sqrt{256}) / (2 * 4) = (4 - 16) / 8 = -12 / 8 = -3/2 = -1.5
x <= -1.5 или x >= 2.5
Ограничения:
2x + 7 > 0 -> 2x > -7 -> x > -3.5
x + 2 > 0 -> x > -2
С учетом ограничений:
-2 < x <= -1.5 или x >= 2.5
Второй случай:
[2log2(x+5)<3+log2(11+x)].
log_2(x+5)^2 < log_2 2^3 + log_2(11+x)
log_2(x+5)^2 < log_2(8(11+x))
(x+5)^2 < 8(11+x)
x^2 + 10x + 25 < 88 + 8x
x^2 + 2x - 63 < 0
D = 2^2 - 4 * 1 * (-63) = 4 + 252 = 256
x1 = (-2 + \sqrt{256}) / (2 * 1) = (-2 + 16) / 2 = 14 / 2 = 7
x2 = (-2 - \sqrt{256}) / (2 * 1) = (-2 - 16) / 2 = -18 / 2 = -9
-9 < x < 7
Ограничения:
x + 5 > 0 -> x > -5
11 + x > 0 -> x > -11
С учетом ограничений:
-5 < x < 7