Первый случай:
1) log2(2+log3(3+x)) = 0
2 + log3(3+x) = 2^0 = 1
log3(3+x) = 1 - 2 = -1
3 + x = 3^{-1} = \frac{1}{3}
x = \frac{1}{3} - 3 = \frac{1 - 9}{3} = -\frac{8}{3}
Проверим:
3 + x = 3 - \frac{8}{3} = \frac{9 - 8}{3} = \frac{1}{3} > 0
log_3(3+x) = log_3(\frac{1}{3}) = -1
2 + log_3(3+x) = 2 - 1 = 1 > 0
Ответ: x = -8/3
Второй случай:
[lg(3+2log2(1+x)) = 0]
3 + 2log2(1+x) = 10^0 = 1
2log2(1+x) = 1 - 3 = -2
log2(1+x) = -1
1 + x = 2^{-1} = \frac{1}{2}
x = \frac{1}{2} - 1 = -\frac{1}{2}
Проверим:
1 + x = 1 - \frac{1}{2} = \frac{1}{2} > 0
Ответ: x = -1/2
Третий случай:
2) 3log3x+3logx3=10
3log_3 x + \frac{3}{log_3 x} = 10
Пусть y = log_3 x
3y + \frac{3}{y} = 10
3y^2 + 3 = 10y
3y^2 - 10y + 3 = 0
D = (-10)^2 - 4*3*3 = 100 - 36 = 64
y1 = (10 + \sqrt{64}) / (2 * 3) = (10 + 8) / 6 = 18/6 = 3
y2 = (10 - \sqrt{64}) / (2 * 3) = (10 - 8) / 6 = 2/6 = 1/3
log_3 x = 3 -> x = 3^3 = 27
log_3 x = 1/3 -> x = 3^(1/3) = \sqrt[3]{3}
Ответ: x = 27, x = \sqrt[3]{3}
Четвертый случай:
[3log7x-2logx7 = 1]
3log_7 x - \frac{2}{log_7 x} = 1
Пусть y = log_7 x
3y - \frac{2}{y} = 1
3y^2 - 2 = y
3y^2 - y - 2 = 0
D = (-1)^2 - 4 * 3 * (-2) = 1 + 24 = 25
y1 = (1 + \sqrt{25}) / (2 * 3) = (1 + 5) / 6 = 6/6 = 1
y2 = (1 - \sqrt{25}) / (2 * 3) = (1 - 5) / 6 = -4/6 = -2/3
log_7 x = 1 -> x = 7^1 = 7
log_7 x = -2/3 -> x = 7^(-2/3) = \frac{1}{\sqrt[3]{7^2}} = \frac{1}{\sqrt[3]{49}}
Ответ: x = 7, x = \frac{1}{\sqrt[3]{49}}