Первый случай:
(\sqrt[3]{x})^{log_7 x - 2} = 7
x^{\frac{1}{3}(log_7 x - 2)} = 7
log_7 (x^{\frac{1}{3}(log_7 x - 2)}) = log_7 7
\frac{1}{3}(log_7 x - 2) log_7 x = 1
(log_7 x - 2) log_7 x = 3
(log_7 x)^2 - 2 log_7 x - 3 = 0
Пусть y = log_7 x
y^2 - 2y - 3 = 0
D = (-2)^2 - 4 * 1 * (-3) = 4 + 12 = 16
y1 = (2 + \sqrt{16}) / (2 * 1) = (2 + 4) / 2 = 6 / 2 = 3
y2 = (2 - \sqrt{16}) / (2 * 1) = (2 - 4) / 2 = -2 / 2 = -1
log_7 x = 3 -> x = 7^3 = 343
log_7 x = -1 -> x = 7^{-1} = \frac{1}{7}
Ответ: x = 343, x = 1/7
Второй случай:
[(√x)lgx = 104+lgx].
(\sqrt{x})^{lg x} = 10^{4 + lg x}
(x^{\frac{1}{2}})^{lg x} = 10^{4 + lg x}
x^{\frac{1}{2}lg x} = 10^{4 + lg x}
lg (x^{\frac{1}{2}lg x}) = lg (10^{4 + lg x})
\frac{1}{2} lg x * lg x = (4 + lg x) * lg 10
\frac{1}{2} (lg x)^2 = 4 + lg x
Пусть y = lg x
\frac{1}{2} y^2 = 4 + y
y^2 = 8 + 2y
y^2 - 2y - 8 = 0
D = (-2)^2 - 4 * 1 * (-8) = 4 + 32 = 36
y1 = (2 + \sqrt{36}) / (2 * 1) = (2 + 6) / 2 = 8 / 2 = 4
y2 = (2 - \sqrt{36}) / (2 * 1) = (2 - 6) / 2 = -4 / 2 = -2
lg x = 4 -> x = 10^4 = 10000
lg x = -2 -> x = 10^{-2} = \frac{1}{100} = 0.01
Ответ: x = 10000, x = 0.01