Решение:
a) f(x) = x³ - 6x² - 63x
f'(x) = 3x² - 12x - 63
3x² - 12x - 63 < 0
x² - 4x - 21 < 0
D = (-4)² - 4 * 1 * (-21) = 16 + 84 = 100
x1 = (4 + √100) / 2 = (4 + 10) / 2 = 14 / 2 = 7
x2 = (4 - √100) / 2 = (4 - 10) / 2 = -6 / 2 = -3
-3 < x < 7
б) f(x) = 3x - 5x² + x³
f'(x) = 3 - 10x + 3x²
3x² - 10x + 3 < 0
D = (-10)² - 4 * 3 * 3 = 100 - 36 = 64
x1 = (10 + √64) / 6 = (10 + 8) / 6 = 18 / 6 = 3
x2 = (10 - √64) / 6 = (10 - 8) / 6 = 2 / 6 = 1/3
1/3 < x < 3
в) f(x) = 2/3 x³ - 8x
f'(x) = 2x² - 8
2x² - 8 < 0
x² - 4 < 0
x² < 4
-2 < x < 2
г) f(x) = 3x² - 9x - (1/3)x³
f'(x) = 6x - 9 - x²
-x² + 6x - 9 < 0
x² - 6x + 9 > 0
(x - 3)² > 0
x ≠ 3
Ответ:
a) -3 < x < 7
б) 1/3 < x < 3
в) -2 < x < 2
г) x ≠ 3