Решим уравнение f'(x) = 0 для каждой функции:
a) f(x) = 2x² - x
f'(x) = 4x - 1
4x - 1 = 0
4x = 1
x = 1/4
б) f(x) = -2/3 x³ + x² + 12
f'(x) = -2x² + 2x
-2x² + 2x = 0
2x(-x + 1) = 0
x = 0 или x = 1
в) f(x) = x³/3 - 1.5x² - 4x
f'(x) = x² - 3x - 4
x² - 3x - 4 = 0
D = (-3)² - 4 * 1 * (-4) = 9 + 16 = 25
x1 = (3 + √25) / 2 = (3 + 5) / 2 = 8 / 2 = 4
x2 = (3 - √25) / 2 = (3 - 5) / 2 = -2 / 2 = -1
г) f(x) = 2x - 5x²
f'(x) = 2 - 10x
2 - 10x = 0
10x = 2
x = 2/10 = 1/5
Ответ:
a) x = 1/4
б) x = 0, x = 1
в) x = 4, x = -1
г) x = 1/5