Вопрос:

3. Точки В, С, D и Е угла САЕ лежат на окружности, причём точка В лежит на АС. АВ=3, AC-6, AD-2. Найдите DE.

Смотреть решения всех заданий с листа

Ответ:

По условию, точки B, C, D, E лежат на окружности, и точка B лежит на AC. Значит, четырехугольник CDEB вписан в окружность. Рассмотрим секущие AE и AC. По теореме о произведениях отрезков секущих, проведенных из одной точки, $$AD \cdot AE = AB \cdot AC$$.

Пусть $$DE = x$$. Тогда $$AE = AD + DE = 2 + x$$.

$$2 \cdot (2 + x) = 3 \cdot 6$$.

$$4 + 2x = 18$$.

$$2x = 14$$.

$$x = 7$$.

Ответ: DE = 7

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие