В треугольнике ABC известны два угла, найдем третий угол:
$$\angle A = 180^\circ - (\angle B + \angle C) = 180^\circ - (65^\circ + 85^\circ) = 180^\circ - 150^\circ = 30^\circ$$По теореме синусов:
$$\frac{BC}{\sin A} = 2R$$Тогда:
$$BC = 2R \cdot \sin A = 2 \cdot 14 \cdot \sin 30^\circ = 2 \cdot 14 \cdot \frac{1}{2} = 14$$Ответ: 14