По теореме косинусов: $$AB^2 = AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos C$$ $$AB^2 = 9^2 + (3\sqrt{6})^2 - 2 \cdot 9 \cdot 3\sqrt{6} \cdot \cos 135°$$ $$AB^2 = 81 + 9 \cdot 6 - 54\sqrt{6} \cdot (-\frac{\sqrt{2}}{2})$$ $$AB^2 = 81 + 54 + 27\sqrt{12}$$ $$AB^2 = 135 + 27 \cdot 2\sqrt{3}$$ $$AB^2 = 135 + 54\sqrt{3}$$ $$AB = \sqrt{135 + 54\sqrt{3}}$$ По теореме синусов: $$\frac{AB}{sin C} = \frac{BC}{sin A}$$ $$\frac{\sqrt{135 + 54\sqrt{3}}}{sin 135°} = \frac{3\sqrt{6}}{sin A}$$ $$sin A = \frac{3\sqrt{6} \cdot sin 135°}{\sqrt{135 + 54\sqrt{3}}}$$ $$sin A = \frac{3\sqrt{6} \cdot \frac{\sqrt{2}}{2}}{\sqrt{135 + 54\sqrt{3}}}$$ $$sin A = \frac{3\sqrt{3}}{\sqrt{135 + 54\sqrt{3}}}$$ $$A = arcsin(\frac{3\sqrt{3}}{\sqrt{135 + 54\sqrt{3}}})$$
Ответ: $$arcsin(\frac{3\sqrt{3}}{\sqrt{135 + 54\sqrt{3}}})$$