В треугольнике ABC сумма углов равна 180°, следовательно ∠C = 180° - ∠A - ∠B = 180° - 135° - 15° = 30°. По теореме синусов имеем: $$\frac{BC}{\sin A} = \frac{AC}{\sin B}$$ $$\frac{BC}{\sin 135°} = \frac{16}{\sin 15°}$$ $$\sin 135° = \sin(180°-45°) = \sin 45° = \frac{\sqrt{2}}{2}$$ $$\sin 15° = \sin(45°-30°) = \sin 45° \cdot \cos 30° - \cos 45° \cdot \sin 30° = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$ Тогда $$BC = \frac{16 \cdot \sin 135°}{\sin 15°} = \frac{16 \cdot \frac{\sqrt{2}}{2}}{\frac{\sqrt{6} - \sqrt{2}}{4}} = \frac{8\sqrt{2}}{\frac{\sqrt{6} - \sqrt{2}}{4}} = \frac{32\sqrt{2}}{\sqrt{6} - \sqrt{2}} = \frac{32\sqrt{2}(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} = \frac{32\sqrt{12} + 32 \cdot 2}{6 - 2} = \frac{32 \cdot 2\sqrt{3} + 64}{4} = 16\sqrt{3} + 16$$
Ответ: $$16\sqrt{3} + 16$$