Решим уравнения.
- a) $$2x^2+7x-9=0$$
$$D = 7^2 - 4 \cdot 2 \cdot (-9) = 49 + 72 = 121$$
$$x_1 = \frac{-7 + \sqrt{121}}{2 \cdot 2} = \frac{-7 + 11}{4} = \frac{4}{4} = 1$$
$$x_2 = \frac{-7 - \sqrt{121}}{2 \cdot 2} = \frac{-7 - 11}{4} = \frac{-18}{4} = -4.5$$
- б) $$3x^2=18x$$
$$3x^2 - 18x = 0$$
$$3x(x - 6) = 0$$
$$x_1 = 0, x_2 = 6$$
- в) $$100x^2 - 16 = 0$$
$$100x^2 = 16$$
$$x^2 = \frac{16}{100} = \frac{4}{25}$$
$$x_1 = \frac{2}{5} = 0.4, x_2 = -\frac{2}{5} = -0.4$$
- г) $$x^2 - 16x + 63 = 0$$
$$D = (-16)^2 - 4 \cdot 1 \cdot 63 = 256 - 252 = 4$$
$$x_1 = \frac{16 + \sqrt{4}}{2 \cdot 1} = \frac{16 + 2}{2} = \frac{18}{2} = 9$$
$$x_2 = \frac{16 - \sqrt{4}}{2 \cdot 1} = \frac{16 - 2}{2} = \frac{14}{2} = 7$$
Ответ: a) $$x_1 = 1, x_2 = -4.5$$, б) $$x_1 = 0, x_2 = 6$$, в) $$x_1 = 0.4, x_2 = -0.4$$, г) $$x_1 = 9, x_2 = 7$$