Вопрос:

8. ★☆☆ На отрезке АВ взяли точки С и Д так, что АС = BD. Точки Е и К выбрали так, что ∠EAD = ∠KBC и ZADE = ∠ВСК. Докажите, что AE = BK.

Смотреть решения всех заданий с листа

Ответ:

Дано: Отрезок AB, точки C ∈ AB, D ∈ AB, AC = BD, ∠EAD = ∠KBC, ∠ADE = ∠BCK.

Доказать: AE = BK.

Доказательство:

1) AD = AC + CD, BC = BD + CD.

Так как AC = BD, то AD = BC.

2) Рассмотрим треугольники ADE и BCK:

AD = BC (доказано выше);

∠EAD = ∠KBC (по условию);

∠ADE = ∠BCK (по условию).

Следовательно, треугольники ADE и BCK равны по стороне и двум прилежащим углам.

Из равенства треугольников следует, что AE = BK.

Ответ: AE = BK, что и требовалось доказать.

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие