Вопрос:

5. Два разноименно заряженных шарика находятся в трансформаторном масле на расстоянии 15,2 см. Определить диэлектрическую проницаемость трансформаторного масла, если эти шарики взаимодействуют с такой же силой в воде на расстоянии 2,5 см.

Ответ:

Пусть $$F$$ - сила взаимодействия между зарядами, $$r_1 = 15.2 \text{ см}$$ - расстояние между шариками в масле, $$r_2 = 2.5 \text{ см}$$ - расстояние между шариками в воде, $$\epsilon_1$$ - диэлектрическая проницаемость масла, $$\epsilon_2 = 81$$ - диэлектрическая проницаемость воды. Сила взаимодействия между двумя точечными зарядами: $$F = k \frac{|q_1 q_2|}{\epsilon r^2}$$ Сила взаимодействия в масле: $$F = k \frac{|q_1 q_2|}{\epsilon_1 r_1^2}$$ Сила взаимодействия в воде: $$F = k \frac{|q_1 q_2|}{\epsilon_2 r_2^2}$$ Так как силы равны: $$k \frac{|q_1 q_2|}{\epsilon_1 r_1^2} = k \frac{|q_1 q_2|}{\epsilon_2 r_2^2}$$ $$\frac{1}{\epsilon_1 r_1^2} = \frac{1}{\epsilon_2 r_2^2}$$ $$\epsilon_1 = \epsilon_2 \frac{r_2^2}{r_1^2}$$ $$\epsilon_1 = 81 \frac{(2.5)^2}{(15.2)^2} = 81 \frac{6.25}{231.04} \approx 81 \cdot 0.027 = 2.187$$ Диэлектрическая проницаемость трансформаторного масла приблизительно равна 2.187.
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие