Отношение площадей треугольников АМN и АВС равно:
\(\frac{S_{AMN}}{S_{ABC}} = \frac{AM \cdot BN}{AC \cdot BC}\)
\(\frac{AM}{AC} = \frac{2}{2+3} = \frac{2}{5}\)
\(\frac{BN}{BC} = \frac{4}{4+5} = \frac{4}{9}\)
\(\frac{S_{AMN}}{S_{ABC}} = \frac{2}{5} \cdot \frac{4}{9} = \frac{8}{45}\)
\(S_{AMN} = 11\)
\(\frac{11}{S_{ABC}} = \frac{8}{45}\)
\(S_{ABC} = \frac{11 \cdot 45}{8} = \frac{495}{8} = 61.875\)
Ответ: 61.875.