Вопрос:

4. Найдите наибольшее целое х, при котором выполняется неравенство log4 x > log4 (3x - 4).

Смотреть решения всех заданий с листа

Ответ:

Решим неравенство log4 x > log4 (3x - 4).

ОДЗ:

x > 0,

3x - 4 > 0 ⇒ x > 4/3.

Так как основание логарифма 4 > 1, функция y = log4 x возрастает, поэтому при снятии знаков логарифмов знак неравенства сохраняется: x > 3x - 4.

2x < 4

x < 2.

С учетом ОДЗ, получаем 4/3 < x < 2.

Наибольшее целое значение x, удовлетворяющее этому неравенству, равно 1, но 1 не удовлетворяет ОДЗ, т.к. должно быть больше 4/3.

Поэтому не существует целого x, при котором выполняется данное неравенство.

Ответ: 4) таких x нет

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие