$$p(b) = 2p_1(b) + p_2(b) = 2(12b^4 - 10b^2 + 7) + (1.4b^3 - 5b^4 + b + 1.2) =$$
$$= 24b^4 - 20b^2 + 14 + 1.4b^3 - 5b^4 + b + 1.2 = 19b^4 + 1.4b^3 - 20b^2 + b + 15.2$$
$$p(b) = p_1(b) - 3p_2(b) = (12b^4 - 10b^2 + 7) - 3(1.4b^3 - 5b^4 + b + 1.2) =$$
$$= 12b^4 - 10b^2 + 7 - 4.2b^3 + 15b^4 - 3b - 3.6 = 27b^4 - 4.2b^3 - 10b^2 - 3b + 3.4$$
Ответ: а) $$19b^4 + 1.4b^3 - 20b^2 + b + 15.2$$, б) $$27b^4 - 4.2b^3 - 10b^2 - 3b + 3.4$$