Решим уравнение:
$$\frac{x^2+x-5}{x} + \frac{3x}{x^2+x-5} + 4 = 0$$
Пусть $$t = \frac{x^2+x-5}{x}$$, тогда уравнение примет вид:
$$t + \frac{3}{t} + 4 = 0$$
$$t^2 + 4t + 3 = 0$$
$$D = 4^2 - 4 \cdot 1 \cdot 3 = 16 - 12 = 4$$
$$t_1 = \frac{-4 + \sqrt{4}}{2 \cdot 1} = \frac{-4 + 2}{2} = \frac{-2}{2} = -1$$
$$t_2 = \frac{-4 - \sqrt{4}}{2 \cdot 1} = \frac{-4 - 2}{2} = \frac{-6}{2} = -3$$
Вернемся к замене:
$$\frac{x^2+x-5}{x} = -1$$ или $$\frac{x^2+x-5}{x} = -3$$
1) $$\frac{x^2+x-5}{x} = -1$$
$$x^2+x-5 = -x$$
$$x^2+2x-5 = 0$$
$$D = 2^2 - 4 \cdot 1 \cdot (-5) = 4 + 20 = 24$$
$$x_1 = \frac{-2 + \sqrt{24}}{2 \cdot 1} = \frac{-2 + 2\sqrt{6}}{2} = -1 + \sqrt{6}$$
$$x_2 = \frac{-2 - \sqrt{24}}{2 \cdot 1} = \frac{-2 - 2\sqrt{6}}{2} = -1 - \sqrt{6}$$
2) $$\frac{x^2+x-5}{x} = -3$$
$$x^2+x-5 = -3x$$
$$x^2+4x-5 = 0$$
$$D = 4^2 - 4 \cdot 1 \cdot (-5) = 16 + 20 = 36$$
$$x_3 = \frac{-4 + \sqrt{36}}{2 \cdot 1} = \frac{-4 + 6}{2} = \frac{2}{2} = 1$$
$$x_4 = \frac{-4 - \sqrt{36}}{2 \cdot 1} = \frac{-4 - 6}{2} = \frac{-10}{2} = -5$$
Ответ: $$\textbf{x = -1 + \sqrt{6}, x = -1 - \sqrt{6}, x = 1, x = -5}$$