1) $$log_3 \frac{1}{27} = log_3 3^{-3} = -3 log_3 3 = -3 \cdot 1 = -3$$.
2) $$\left(\frac{1}{3}\right)^{2 \log_{\frac{1}{3}} 7} = \left(3^{-1}\right)^{2 \log_{3^{-1}} 7} = 3^{-2 \log_{3^{-1}} 7} = 3^{2 \log_{3} 7} = 3^{\log_{3} 7^2} = 3^{\log_{3} 49} = 49$$.
3) $$log_2 56 + 2 log_2 12 - log_2 63 = log_2 56 + log_2 12^2 - log_2 63 = log_2 56 + log_2 144 - log_2 63 = log_2 \frac{56 \cdot 144}{63} = log_2 \frac{8 \cdot 7 \cdot 16 \cdot 9}{9 \cdot 7} = log_2 (8 \cdot 16) = log_2 (2^3 \cdot 2^4) = log_2 2^7 = 7$$.
Ответ: 1) -3; 2) 49; 3) 7