Вопрос:

26 \(\frac{x^2+6x+9}{x+3}\)

Смотреть решения всех заданий с листа

Ответ:

Для сокращения дроби \(\frac{x^2+6x+9}{x+3}\) необходимо разложить числитель на множители, используя формулу квадрата суммы: \((a + b)^2 = a^2 + 2ab + b^2\).

В числителе имеем: \(x^2 + 6x + 9 = x^2 + 2 \cdot x \cdot 3 + 3^2\). Тогда \(x^2 + 6x + 9 = (x + 3)^2 = (x+3)(x+3)\).

Теперь дробь можно записать в виде: \(\frac{(x+3)(x+3)}{x+3}\).

Сокращаем дробь на \((x + 3)\), предполагая, что \(x
eq -3\). Получаем: \(x + 3\).

Ответ: \(x+3\)

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие