1) $$2^x + 2^{x-3} = 18$$
$$2^x + \frac{2^x}{2^3} = 18$$
$$2^x + \frac{2^x}{8} = 18$$
$$2^x \cdot (1 + \frac{1}{8}) = 18$$
$$2^x \cdot \frac{9}{8} = 18$$
$$2^x = 18 \cdot \frac{8}{9}$$
$$2^x = 2 \cdot 8$$
$$2^x = 16$$
$$2^x = 2^4$$
$$x = 4$$
2) $$3^x + 4 \cdot 3^{x+1} = 13$$
$$3^x + 4 \cdot 3^x \cdot 3 = 13$$
$$3^x + 12 \cdot 3^x = 13$$
$$13 \cdot 3^x = 13$$
$$3^x = 1$$
$$3^x = 3^0$$
$$x = 0$$
3) $$2 \cdot 3^{x+1} - 6 \cdot 3^{x-1} - 3^x = 9$$
$$2 \cdot 3^x \cdot 3 - 6 \cdot \frac{3^x}{3} - 3^x = 9$$
$$6 \cdot 3^x - 2 \cdot 3^x - 3^x = 9$$
$$3^x (6 - 2 - 1) = 9$$
$$3^x \cdot 3 = 9$$
$$3^x = 3$$
$$3^x = 3^1$$
$$x = 1$$
4) $$5^{x+1} + 3 \cdot 5^{x-1} - 6 \cdot 5^x + 10 = 0$$
$$5^x \cdot 5 + 3 \cdot \frac{5^x}{5} - 6 \cdot 5^x + 10 = 0$$
$$5^x (5 + \frac{3}{5} - 6) + 10 = 0$$
$$5^x (\frac{25 + 3 - 30}{5}) + 10 = 0$$
$$5^x (\frac{-2}{5}) + 10 = 0$$
$$5^x (\frac{-2}{5}) = -10$$
$$5^x = -10 : (\frac{-2}{5})$$
$$5^x = -10 \cdot (\frac{-5}{2})$$
$$5^x = 25$$
$$5^x = 5^2$$
$$x = 2$$
Ответ: 1) x = 4; 2) x = 0; 3) x = 1; 4) x = 2