1) $$3^{x+1} = 27^{x-1}$$
$$3^{x+1} = (3^3)^{x-1}$$
$$3^{x+1} = 3^{3x-3}$$
$$x+1 = 3x - 3$$
$$2x = 4$$
$$x = 2$$
2) $$0,2^{x^2 + 4x - 5} = 1$$
$$0,2^{x^2 + 4x - 5} = 0,2^0$$
$$x^2 + 4x - 5 = 0$$
$$D = b^2 - 4ac = 4^2 - 4 \cdot 1 \cdot (-5) = 16 + 20 = 36$$
$$x_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-4 + 6}{2} = 1$$
$$x_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-4 - 6}{2} = -5$$
3) $$2^{x+3} - 2^{x+1} = 12$$
$$2^x \cdot 2^3 - 2^x \cdot 2 = 12$$
$$8 \cdot 2^x - 2 \cdot 2^x = 12$$
$$6 \cdot 2^x = 12$$
$$2^x = 2$$
$$x = 1$$
4) $$4 \cdot 2^{2x} - 5 \cdot 2^x + 1 = 0$$
$$4 \cdot (2^x)^2 - 5 \cdot 2^x + 1 = 0$$
Замена: $$y = 2^x$$
$$4y^2 - 5y + 1 = 0$$
$$D = b^2 - 4ac = (-5)^2 - 4 \cdot 4 \cdot 1 = 25 - 16 = 9$$
$$y_1 = \frac{-b + \sqrt{D}}{2a} = \frac{5 + 3}{8} = 1$$
$$y_2 = \frac{-b - \sqrt{D}}{2a} = \frac{5 - 3}{8} = \frac{1}{4}$$
$$2^x = 1$$ или $$2^x = \frac{1}{4}$$
$$x = 0$$ или $$x = -2$$
Ответ: 1) x = 2; 2) x = 1 или x = -5; 3) x = 1; 4) x = 0 или x = -2