1) $$5^{2x} - 5^{x+5} - 600 = 0$$
$$5^{2x} - 5^x \cdot 5^5 - 600 = 0$$
Замена: $$y = 5^x$$
$$y^2 - 3125y - 600 = 0$$
$$D = b^2 - 4ac = (-3125)^2 - 4 \cdot 1 \cdot (-600) = 9765625 + 2400 = 9768025$$
$$y_1 = \frac{-b + \sqrt{D}}{2a} = \frac{3125 + \sqrt{9768025}}{2} > 0$$
$$y_2 = \frac{-b - \sqrt{D}}{2a} = \frac{3125 - \sqrt{9768025}}{2} < 0$$
Т.к. $$y = 5^x > 0$$, то $$y_2$$ - не подходит.
$$5^x = \frac{3125 + \sqrt{9768025}}{2}$$
$$x = \log_5{\frac{3125 + \sqrt{9768025}}{2}}$$
2) $$9^x - 3^{x+6} = 0$$
$$9^x = 3^{x+6}$$
$$(3^2)^x = 3^{x+6}$$
$$3^{2x} = 3^{x+6}$$
$$2x = x + 6$$
$$x = 6$$
3) $$3^x + 9^{x-1} - 810 = 0$$
$$3^x + (3^2)^{x-1} - 810 = 0$$
$$3^x + 3^{2x-2} - 810 = 0$$
$$3^x + \frac{3^{2x}}{3^2} - 810 = 0$$
$$3^x + \frac{(3^x)^2}{9} - 810 = 0$$
Замена: $$y = 3^x$$
$$y + \frac{y^2}{9} - 810 = 0$$
$$9y + y^2 - 7290 = 0$$
$$y^2 + 9y - 7290 = 0$$
$$D = b^2 - 4ac = 9^2 - 4 \cdot 1 \cdot (-7290) = 81 + 29160 = 29241$$
$$y_1 = \frac{-b + \sqrt{D}}{2a} = \frac{-9 + \sqrt{29241}}{2} = \frac{-9 + 171}{2} = \frac{162}{2} = 81 > 0$$
$$y_2 = \frac{-b - \sqrt{D}}{2a} = \frac{-9 - \sqrt{29241}}{2} = \frac{-9 - 171}{2} = \frac{-180}{2} = -90 < 0$$
Т.к. $$y = 3^x > 0$$, то $$y_2$$ - не подходит.
$$3^x = 81$$
$$3^x = 3^4$$
$$x = 4$$
4) $$4^x + 2^{2x+1} - 80 = 0$$
$$(2^2)^x + 2^{2x} \cdot 2 - 80 = 0$$
$$2^{2x} + 2^{2x} \cdot 2 - 80 = 0$$
$$(2^x)^2 + 2 \cdot (2^x)^2 - 80 = 0$$
$$3 \cdot (2^x)^2 - 80 = 0$$
Замена: $$y = 2^x$$
$$3y^2 - 80 = 0$$
$$3y^2 = 80$$
$$y^2 = \frac{80}{3}$$
$$y = \pm \sqrt{\frac{80}{3}}$$
$$y = \pm \sqrt{\frac{16 \cdot 5}{3}}$$
$$y = \pm 4\sqrt{\frac{5}{3}}$$
Т.к. $$y = 2^x > 0$$, то $$y = 4\sqrt{\frac{5}{3}}$$
$$2^x = 4\sqrt{\frac{5}{3}}$$
$$2^x = 2^2\sqrt{\frac{5}{3}}$$
$$x = \log_2{(4\sqrt{\frac{5}{3}})}$$
Ответ: 1) $$x = \log_5{\frac{3125 + \sqrt{9768025}}{2}}$$; 2) x = 6; 3) x = 4; 4) $$x = \log_2{(4\sqrt{\frac{5}{3}})}$$