Докажем равенство $$\frac{1}{(a-b)(a-c)} + \frac{1}{(b-a)(b-c)} - \frac{1}{(c-a)(b-c)} = 0$$.
$$\frac{1}{(a-b)(a-c)} - \frac{1}{(a-b)(b-c)} - \frac{1}{(c-a)(b-c)} = \frac{1}{(a-b)(a-c)} - \frac{1}{(a-b)(b-c)} + \frac{1}{(a-c)(c-b)} = \frac{(b-c) - (a-c) + (a-b)}{(a-b)(a-c)(b-c)} = \frac{b-c-a+c+a-b}{(a-b)(a-c)(b-c)} = \frac{0}{(a-b)(a-c)(b-c)} = 0$$
Ответ: 0