-
$$7x^2 - 21 = 0$$
$$7x^2 = 21$$
$$x^2 = 3$$
$$x = \pm \sqrt{3}$$
Ответ: $$x_1 = \sqrt{3}$$, $$x_2 = -\sqrt{3}$$
-
$$5x^2 + 9x = 0$$
$$x(5x+9)=0$$
$$x_1 = 0$$
$$5x+9=0$$
$$5x = -9$$
$$x_2 = -\frac{9}{5}$$
Ответ: $$x_1 = 0$$, $$x_2 = -\frac{9}{5}$$
-
$$x^2 + x - 42 = 0$$
$$D = 1^2 - 4 \cdot 1 \cdot (-42) = 1 + 168 = 169$$
$$x_{1,2} = \frac{-1 \pm \sqrt{169}}{2 \cdot 1} = \frac{-1 \pm 13}{2}$$
$$x_1 = \frac{-1 + 13}{2} = \frac{12}{2} = 6$$
$$x_2 = \frac{-1 - 13}{2} = \frac{-14}{2} = -7$$
Ответ: $$x_1 = 6$$, $$x_2 = -7$$
-
$$3x^2 - 28x + 9 = 0$$
$$D = (-28)^2 - 4 \cdot 3 \cdot 9 = 784 - 108 = 676$$
$$x_{1,2} = \frac{-(-28) \pm \sqrt{676}}{2 \cdot 3} = \frac{28 \pm 26}{6}$$
$$x_1 = \frac{28 + 26}{6} = \frac{54}{6} = 9$$
$$x_2 = \frac{28 - 26}{6} = \frac{2}{6} = \frac{1}{3}$$
Ответ: $$x_1 = 9$$, $$x_2 = \frac{1}{3}$$
-
$$2x^2 - 8x + 11 = 0$$
$$D = (-8)^2 - 4 \cdot 2 \cdot 11 = 64 - 88 = -24$$
D < 0, корней нет
Ответ: корней нет
-
$$10x^2 - 6x - 2 = 0$$
$$D = (-6)^2 - 4 \cdot 10 \cdot (-2) = 36 + 80 = 116$$
$$x_{1,2} = \frac{-(-6) \pm \sqrt{116}}{2 \cdot 10} = \frac{6 \pm 2\sqrt{29}}{20} = \frac{3 \pm \sqrt{29}}{10}$$
Ответ: $$x_1 = \frac{3 + \sqrt{29}}{10}$$, $$x_2 = \frac{3 - \sqrt{29}}{10}$$
-
$$16x^2 - 8x + 1 = 0$$
$$D = (-8)^2 - 4 \cdot 16 \cdot 1 = 64 - 64 = 0$$
$$x = \frac{-(-8) \pm \sqrt{0}}{2 \cdot 16} = \frac{8}{32} = \frac{1}{4}$$
Ответ: $$x = \frac{1}{4}$$