-
$$4x^2 - 20 = 0$$
$$4x^2 = 20$$
$$x^2 = 5$$
$$x = \pm \sqrt{5}$$
Ответ: $$x_1 = \sqrt{5}$$, $$x_2 = -\sqrt{5}$$
-
$$3x^2 + 5x = 0$$
$$x(3x+5)=0$$
$$x_1 = 0$$
$$3x+5=0$$
$$3x = -5$$
$$x_2 = -\frac{5}{3}$$
Ответ: $$x_1 = 0$$, $$x_2 = -\frac{5}{3}$$
-
$$x^2 - 5x - 24 = 0$$
$$D = (-5)^2 - 4 \cdot 1 \cdot (-24) = 25 + 96 = 121$$
$$x_{1,2} = \frac{-(-5) \pm \sqrt{121}}{2 \cdot 1} = \frac{5 \pm 11}{2}$$
$$x_1 = \frac{5 + 11}{2} = \frac{16}{2} = 8$$
$$x_2 = \frac{5 - 11}{2} = \frac{-6}{2} = -3$$
Ответ: $$x_1 = 8$$, $$x_2 = -3$$
-
$$2x^2 + 13x + 6 = 0$$
$$D = 13^2 - 4 \cdot 2 \cdot 6 = 169 - 48 = 121$$
$$x_{1,2} = \frac{-13 \pm \sqrt{121}}{2 \cdot 2} = \frac{-13 \pm 11}{4}$$
$$x_1 = \frac{-13 + 11}{4} = \frac{-2}{4} = -\frac{1}{2}$$
$$x_2 = \frac{-13 - 11}{4} = \frac{-24}{4} = -6$$
Ответ: $$x_1 = -\frac{1}{2}$$, $$x_2 = -6$$
-
$$7x^2 - 6x + 2 = 0$$
$$D = (-6)^2 - 4 \cdot 7 \cdot 2 = 36 - 56 = -20$$
D < 0, корней нет
Ответ: корней нет
-
$$3x^2 - 8x - 5 = 0$$
$$D = (-8)^2 - 4 \cdot 3 \cdot (-5) = 64 + 60 = 124$$
$$x_{1,2} = \frac{-(-8) \pm \sqrt{124}}{2 \cdot 3} = \frac{8 \pm 2\sqrt{31}}{6} = \frac{4 \pm \sqrt{31}}{3}$$
Ответ: $$x_1 = \frac{4 + \sqrt{31}}{3}$$, $$x_2 = \frac{4 - \sqrt{31}}{3}$$
-
$$4x^2 + 12x + 9 = 0$$
$$D = 12^2 - 4 \cdot 4 \cdot 9 = 144 - 144 = 0$$
$$x = \frac{-12 \pm \sqrt{0}}{2 \cdot 4} = \frac{-12}{8} = -\frac{3}{2}$$
Ответ: $$x = -\frac{3}{2}$$