Вопрос:

17. Радиус вписанной в квадрат окружности равен $$8\sqrt{2}$$. Найдите диагональ этого квадрата.

Ответ:

Радиус вписанной в квадрат окружности равен половине стороны квадрата: $$r = \frac{a}{2}$$. $$a = 2r = 2 \cdot 8\sqrt{2} = 16\sqrt{2}$$. Диагональ квадрата $$d$$ связана со стороной $$a$$ соотношением: $$d = a\sqrt{2}$$. $$d = 16\sqrt{2} \cdot \sqrt{2} = 16 \cdot 2 = 32$$. Ответ: 32
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие