- a) $$x^2 - x = 0$$
$$x(x - 1) = 0$$
$$x_1 = 0, x_2 = 1$$
- в) $$5x^2 + 8x - 4 = 0$$
$$D = 8^2 - 4(5)(-4) = 64 + 80 = 144$$
$$x = \frac{-8 \pm \sqrt{144}}{2(5)} = \frac{-8 \pm 12}{10}$$
$$x_1 = \frac{-8 + 12}{10} = \frac{4}{10} = \frac{2}{5} = 0.4$$
$$x_2 = \frac{-8 - 12}{10} = \frac{-20}{10} = -2$$
- д) $$7x = 4x^2$$
$$4x^2 - 7x = 0$$
$$x(4x - 7) = 0$$
$$x_1 = 0, x_2 = \frac{7}{4} = 1.75$$
- ж) $$5x^2 - 3 = 0$$
$$5x^2 = 3$$
$$x^2 = \frac{3}{5}$$
$$x = \pm \sqrt{\frac{3}{5}} = \pm \sqrt{\frac{15}{25}} = \pm \frac{\sqrt{15}}{5}$$
Ответ: a) x = 0, x = 1; B) x = 0.4, x = -2; д) x = 0, x = 1.75; ж) x = ±√15/5