Используем формулу Бернулли: $$P_n(k) = C_n^k * p^k * q^{n-k}$$, где n = 5, p = 0.5, q = 0.5.
а) Решка выпадет ровно 3 раза:
$$P_5(3) = C_5^3 * (0.5)^3 * (0.5)^2 = \frac{5!}{3!2!} * (0.5)^5 = 10 * \frac{1}{32} = \frac{10}{32} = 0.3125$$
б) Орел выпадет от двух до четырех раз:
$$P_5(2 \le k \le 4) = P_5(2) + P_5(3) + P_5(4)$$
$$P_5(2) = C_5^2 * (0.5)^2 * (0.5)^3 = \frac{5!}{2!3!} * (0.5)^5 = 10 * \frac{1}{32} = \frac{10}{32} = 0.3125$$
$$P_5(4) = C_5^4 * (0.5)^4 * (0.5)^1 = \frac{5!}{4!1!} * (0.5)^5 = 5 * \frac{1}{32} = \frac{5}{32} = 0.15625$$
$$P_5(2 \le k \le 4) = 0.3125 + 0.3125 + 0.15625 = 0.68125$$
в) Решка выпадет либо 1 раз, либо 3 раза:
$$P_5(1) = C_5^1 * (0.5)^1 * (0.5)^4 = 5 * (0.5)^5 = 5 * \frac{1}{32} = \frac{5}{32} = 0.15625$$
$$P_5(1 \lor 3) = P_5(1) + P_5(3) = 0.15625 + 0.3125 = 0.46875$$
г) Орел выпадет нечетное число раз (1, 3, 5):
$$P_5(1) = C_5^1 * (0.5)^1 * (0.5)^4 = \frac{5!}{1!4!} * (0.5)^5 = 5 * (0.5)^5 = 5 * \frac{1}{32} = \frac{5}{32} = 0.15625$$
$$P_5(3) = C_5^3 * (0.5)^3 * (0.5)^2 = \frac{5!}{3!2!} * (0.5)^5 = 10 * (0.5)^5 = 10 * \frac{1}{32} = \frac{10}{32} = 0.3125$$
$$P_5(5) = C_5^5 * (0.5)^5 * (0.5)^0 = \frac{5!}{5!0!} * (0.5)^5 = 1 * (0.5)^5 = \frac{1}{32} = 0.03125$$
$$P_5(1 \lor 3 \lor 5) = 0.15625 + 0.3125 + 0.03125 = 0.5$$
Ответ: а) 0.3125, б) 0.68125, в) 0.46875, г) 0.5