Вопрос:

5. Треугольника с какими сторонами не существует и объясните почему: а) 2м, 3м, 4м; б) 4дм, 5дм, 9дм; в) 12см, 13см, 20см?

Смотреть решения всех заданий с листа

Ответ:

Для того чтобы треугольник существовал, необходимо, чтобы сумма длин любых двух его сторон была больше длины третьей стороны. Это называется неравенством треугольника. а) 2м, 3м, 4м: $$2 + 3 > 4 \Rightarrow 5 > 4$$ $$2 + 4 > 3 \Rightarrow 6 > 3$$ $$3 + 4 > 2 \Rightarrow 7 > 2$$ Все неравенства выполняются, следовательно, треугольник с такими сторонами существует. б) 4дм, 5дм, 9дм: $$4 + 5 > 9 \Rightarrow 9 > 9$$ Неравенство не выполняется, следовательно, треугольника с такими сторонами не существует. в) 12см, 13см, 20см: $$12 + 13 > 20 \Rightarrow 25 > 20$$ $$12 + 20 > 13 \Rightarrow 32 > 13$$ $$13 + 20 > 12 \Rightarrow 33 > 12$$ Все неравенства выполняются, следовательно, треугольник с такими сторонами существует. Таким образом, треугольника не существует только в случае б). Ответ: б) 4дм, 5дм, 9дм.
ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие