Заменим $$1 - \sin^2 \alpha$$ на $$\cos^2 \alpha$$, $$1 - \cos^2 \alpha$$ на $$\sin^2 \alpha$$ и $$\cot \alpha$$ на $$\frac{1}{\tan \alpha}$$:
$$\frac{\cos^2 \alpha}{\sin^2 \alpha} + \tan \alpha \cdot \frac{1}{\tan \alpha} = \cot^2 \alpha + 1 = \frac{\cos^2 \alpha}{\sin^2 \alpha} + 1 = \frac{\cos^2 \alpha + \sin^2 \alpha}{\sin^2 \alpha} = \frac{1}{\sin^2 \alpha}$$.
Итоговый ответ: **$$\frac{1}{\sin^2 \alpha}$$**