Игральная кость имеет 6 граней, пронумерованных от 1 до 6. Число очков, кратное 6, это только 6. Таким образом, благоприятный исход только один. Вероятность события вычисляется как отношение количества благоприятных исходов к общему количеству исходов.
$$P = \frac{\text{количество благоприятных исходов}}{\text{общее количество исходов}}$$
В нашем случае, количество благоприятных исходов равно 1 (выпадение 6), а общее количество исходов равно 6 (выпадение любого числа от 1 до 6).
$$P = \frac{1}{6}$$
Ответ: Вероятность выпадения числа очков, кратного 6, равна \(\frac{1}{6}\).