В) Периметр треугольника ABC:
Найдем длины сторон:
$$|AB| = \sqrt{(2 - (-4))^2 + (2 - 2)^2 + (3 - 7)^2} = \sqrt{6^2 + 0^2 + (-4)^2} = \sqrt{36 + 0 + 16} = \sqrt{52}$$ $$|BC| = \sqrt{(6 - 2)^2 + (1 - 2)^2 + (0 - 3)^2} = \sqrt{4^2 + (-1)^2 + (-3)^2} = \sqrt{16 + 1 + 9} = \sqrt{26}$$ $$|AC| = \sqrt{(6 - (-4))^2 + (1 - 2)^2 + (0 - 7)^2} = \sqrt{10^2 + (-1)^2 + (-7)^2} = \sqrt{100 + 1 + 49} = \sqrt{150}$$Периметр:
$$P = |AB| + |BC| + |AC| = \sqrt{52} + \sqrt{26} + \sqrt{150}$$ $$P \approx 7.21 + 5.10 + 12.25 \approx 24.56$$Ответ: √52 + √26 + √150 ≈ 24.56