Решим уравнение log3x + log9x + log27x = 5,5
log3x + log32x + log33x = 5,5
log3x + 1/2log3x + 1/3log3x = 5,5
log3x(1 + 1/2 + 1/3) = 5,5
log3x(6/6 + 3/6 + 2/6) = 5,5
log3x(11/6) = 11/2
log3x = (11/2)/(11/6) = (11/2)*(6/11) = 3
x = 33
x = 27
Ответ: 27