Вопрос:

5) 2n - 5m + 6n² + 5m² ; n mn

Ответ:

Чтобы представить выражение в виде дроби, необходимо сложить две дроби с разными знаменателями. Для этого нужно привести дроби к общему знаменателю. В данном случае, общий знаменатель будет mn.

  1. Приведем дроби к общему знаменателю. Общий знаменатель равен mn. Домножим числитель первой дроби на m:$$\frac{2n - 5m}{n} + \frac{6n^2 + 5m^2}{mn} = \frac{(2n - 5m) \cdot m}{mn} + \frac{6n^2 + 5m^2}{mn}$$
  2. Выполним умножение в числителе первой дроби:$$\frac{2nm - 5m^2}{mn} + \frac{6n^2 + 5m^2}{mn}$$
  3. Сложим дроби с общим знаменателем:$$\frac{2nm - 5m^2 + 6n^2 + 5m^2}{mn} = \frac{2nm + 6n^2}{mn}$$

Ответ: $$\frac{2nm + 6n^2}{mn}$$

Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие