Решим уравнение $$tg(3x + \frac{\pi}{6}) = 1$$.
$$3x + \frac{\pi}{6} = arctg(1) + \pi n, n \in Z$$
$$3x + \frac{\pi}{6} = \frac{\pi}{4} + \pi n, n \in Z$$
$$3x = \frac{\pi}{4} - \frac{\pi}{6} + \pi n, n \in Z$$
$$3x = \frac{3\pi - 2\pi}{12} + \pi n, n \in Z$$
$$3x = \frac{\pi}{12} + \pi n, n \in Z$$
$$x = \frac{\pi}{36} + \frac{\pi n}{3}, n \in Z$$
Ответ: $$x = \frac{\pi}{36} + \frac{\pi n}{3}, n \in Z$$