Найдем нули функции $$f(x) = 2sin(\frac{\pi}{4} - x) - \sqrt{3}$$.
$$2sin(\frac{\pi}{4} - x) - \sqrt{3} = 0$$
$$2sin(\frac{\pi}{4} - x) = \sqrt{3}$$
$$sin(\frac{\pi}{4} - x) = \frac{\sqrt{3}}{2}$$
$$\frac{\pi}{4} - x = (-1)^n arcsin(\frac{\sqrt{3}}{2}) + \pi n, n \in Z$$
$$\frac{\pi}{4} - x = (-1)^n \frac{\pi}{3} + \pi n, n \in Z$$
$$x = \frac{\pi}{4} - (-1)^n \frac{\pi}{3} - \pi n, n \in Z$$
Ответ: $$x = \frac{\pi}{4} - (-1)^n \frac{\pi}{3} - \pi n, n \in Z$$