Раскроем скобки и приведем уравнение к стандартному виду квадратного уравнения:
(x + 3)² = x² + 6x + 9
(1 - 2x)² = 1 - 4x + 4x²
Тогда уравнение принимает вид:
x² + 6x + 9 - 16 = 1 - 4x + 4x²
Перенесем все члены в левую часть:
x² - 4x² + 6x + 4x + 9 - 16 - 1 = 0
-3x² + 10x - 8 = 0
Умножим на -1:
3x² - 10x + 8 = 0
Решим квадратное уравнение 3x² - 10x + 8 = 0 через дискриминант:
D = (-10)² - 4 * 3 * 8 = 100 - 96 = 4
x1 = (10 + √4) / (2 * 3) = (10 + 2) / 6 = 12 / 6 = 2
x2 = (10 - √4) / (2 * 3) = (10 - 2) / 6 = 8 / 6 = 4/3
Ответ: x1 = 2, x2 = 4/3