a) Вычислим:
$$\frac{\sqrt[3]{152}}{4\sqrt[3]{19}} = \frac{\sqrt[3]{8 \cdot 19}}{4\sqrt[3]{19}} = \frac{\sqrt[3]{8} \cdot \sqrt[3]{19}}{4\sqrt[3]{19}} = \frac{2}{4} = \frac{1}{2} = 0,5$$б) Вычислим:
$$\left(\frac{2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}}}{\sqrt[12]{2}}\right)^{2} = \left(\frac{2^{\frac{1}{3}} \cdot 2^{\frac{1}{4}}}{2^{\frac{1}{12}}}\right)^{2} = \left(\frac{2^{\frac{1}{3} + \frac{1}{4}}}{2^{\frac{1}{12}}}\right)^{2} = \left(\frac{2^{\frac{4+3}{12}}}{2^{\frac{1}{12}}}\right)^{2} = \left(\frac{2^{\frac{7}{12}}}{2^{\frac{1}{12}}}\right)^{2} = \left(2^{\frac{7}{12} - \frac{1}{12}}\right)^{2} = \left(2^{\frac{6}{12}}\right)^{2} = \left(2^{\frac{1}{2}}\right)^{2} = 2$$в) Вычислим:
$$\log _{6} 216 = \log _{6} 6^3 = 3 \log _{6} 6 = 3$$г) Не видно задание.
Ответ: а) 0,5; б) 2; в) 3