Векторы перпендикулярны, если их скалярное произведение равно нулю: $$p \cdot q = 0$$.
В данном случае: $$p{2; -3}$$, $$q{x; -4}$$.
Скалярное произведение: $$p \cdot q = 2 \cdot x + (-3) \cdot (-4) = 2x + 12$$.
Приравниваем к нулю: $$2x + 12 = 0$$.
Решаем уравнение: $$2x = -12$$, $$x = -6$$.
Ответ: -6