Решение:
1. \(sin B = \frac{AC}{AB} = \frac{1}{4}\). Тогда \(AB = 4AC = 4 \cdot 6 = 24\) см. По теореме Пифагора, \(BC = \sqrt{AB^2 - AC^2} = \sqrt{24^2 - 6^2} = \sqrt{576 - 36} = \sqrt{540} = 6\sqrt{15}\) см.
2. \(sin B = \frac{AC}{AB} = \frac{1}{3}\). Тогда \(AB = 3AC\), \(AC^2 + BC^2 = AB^2\), \(AC^2 + 4^2 = (3AC)^2\), \(AC^2 + 16 = 9AC^2\), \(8AC^2 = 16\), \(AC^2 = 2\), \(AC = \sqrt{2}\) см. \(AB = 3AC = 3\sqrt{2}\) см.
3. \(ctg A = \frac{AC}{BC} = 3\). Тогда \(AC = 3BC\), \(AB^2 = AC^2 + BC^2\), \(2^2 = (3BC)^2 + BC^2\), \(4 = 9BC^2 + BC^2\), \(10BC^2 = 4\), \(BC^2 = \frac{4}{10} = \frac{2}{5}\), \(BC = \sqrt{\frac{2}{5}} = \frac{\sqrt{10}}{5}\) см. \(AC = 3BC = \frac{3\sqrt{10}}{5}\) см.
4. \(cos A = \frac{AC}{AB} = \frac{3}{7}\). Тогда \(AB = \frac{7AC}{3} = \frac{7 \cdot 5}{3} = \frac{35}{3}\) см. \(BC = \sqrt{AB^2 - AC^2} = \sqrt{(\frac{35}{3})^2 - 5^2} = \sqrt{\frac{1225}{9} - 25} = \sqrt{\frac{1225 - 225}{9}} = \sqrt{\frac{1000}{9}} = \frac{10\sqrt{10}}{3}\) см.
Ответ: 1) \(AB = 24\) см, \(BC = 6\sqrt{15}\) см; 2) \(AC = \sqrt{2}\) см, \(AB = 3\sqrt{2}\) см; 3) \(BC = \frac{\sqrt{10}}{5}\) см, \(AC = \frac{3\sqrt{10}}{5}\) см; 4) \(AB = \frac{35}{3}\) см, \(BC = \frac{10\sqrt{10}}{3}\) см.
Убрать каракули