Вопрос:

6. Решите неравенство - х²+x≥0 1) (-∞; 0) ∪ (1; +∞) 3) (0; 1) 2) [0; 1] 4) (-∞; 0] U [1; +∞)

Смотреть решения всех заданий с листа

Ответ:

Давай решим неравенство -x² + x ≥ 0.

Сначала вынесем -x за скобки: -x(x - 1) ≥ 0

Теперь найдем нули функции, то есть решим уравнение -x(x - 1) = 0. Это уравнение имеет два корня: x = 0 и x - 1 = 0, откуда x = 1.

Теперь отметим эти корни на числовой прямой и определим знаки выражения на каждом из интервалов:

       -          +          -
----(0)-----(1)-----

На интервале (-∞, 0) выражение отрицательно, на интервале (0, 1) – положительно, и на интервале (1, +∞) – снова отрицательно.

Нам нужно решить неравенство -x² + x ≥ 0, то есть найти интервалы, где выражение больше или равно нулю. Это интервал [0, 1].

Ответ: 2) [0; 1]

ГДЗ по фото 📸
Подать жалобу Правообладателю

Похожие