Вопрос:

Вариант 1. 1. Периметр прямоугольника ABCD равен 32 см, AD = 10 см. Площадь прямоугольника равна:

Ответ:

Дано: прямоугольник ABCD, P=32 см, AD=10 см. Найти: S(площадь) - ? Решение: 1. Вспомним формулу периметра прямоугольника: \(P = 2 * (a + b)\), где \(a\) и \(b\) - длины сторон прямоугольника. 2. Из условия известно, что \(P = 32\) см и \(AD = 10\) см. Так как в прямоугольнике противоположные стороны равны, то \(AD = BC = 10\) см. 3. Выразим длину стороны AB из формулы периметра: \(32 = 2 * (10 + AB)\) \(16 = 10 + AB\) \(AB = 16 - 10\) \(AB = 6\) см. 4. Вспомним формулу площади прямоугольника: \(S = a * b\). 5. Подставим значения длин сторон \(AB\) и \(AD\) в формулу площади: \(S = 6 * 10 = 60\) см². Ответ: б) 60 см².
Смотреть решения всех заданий с листа
Подать жалобу Правообладателю

Похожие