2) $$ 3^x + 4 \cdot 3^{-x+1} = 13 $$
$$ 3^x + \frac{12}{3^x} = 13 $$
$$ (3^x)^2 + 12 = 13 \cdot 3^x $$
$$ (3^x)^2 - 13 \cdot 3^x + 12 = 0 $$
Пусть $$ t = 3^x $$, тогда
$$ t^2 - 13t + 12 = 0 $$
$$ D = 169 - 48 = 121 $$
$$ t_1 = \frac{13 + 11}{2} = 12, t_2 = \frac{13 - 11}{2} = 1 $$
1) $$ 3^x = 12, x = \log_3 12 $$
2) $$ 3^x = 1, x = 0 $$
Ответ: log₃12, 0