1) $$ 3^{x+1} = 27^{x-1} $$
$$ 3^{x+1} = 3^{3(x-1)} $$
$$ x + 1 = 3x - 3 $$
$$ 2x = 4 $$
$$ x = 2 $$
2) $$ 0.2^{x^2+4x-5} = 1 $$
$$ x^2 + 4x - 5 = 0 $$
$$ (x+5)(x-1) = 0 $$
$$ x_1 = -5, x_2 = 1 $$
3) $$ 2^{x+3} - 2^{x+1} = 12 $$
$$ 8 \cdot 2^x - 2 \cdot 2^x = 12 $$
$$ 6 \cdot 2^x = 12 $$
$$ 2^x = 2 $$
$$ x = 1 $$
4) $$ 4 \cdot 2^{2x} - 5 \cdot 2^x + 1 = 0 $$
$$ 4 \cdot (2^x)^2 - 5 \cdot 2^x + 1 = 0 $$
Пусть $$ t = 2^x $$, тогда
$$ 4t^2 - 5t + 1 = 0 $$
$$ D = 25 - 16 = 9 $$
$$ t_1 = \frac{5 + 3}{8} = 1, t_2 = \frac{5 - 3}{8} = \frac{1}{4} $$
1) $$ 2^x = 1, x = 0 $$
2) $$ 2^x = \frac{1}{4}, x = -2 $$
Ответ: 1) 2; 2) -5, 1; 3) 1; 4) 0, -2